CR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KÄHLER PRODUCT MANIFOLDS

Mehmet Atçeken*
Gaziosmanpasa University, Faculty of Arts and Sciences
Department of Mathematics, Tokat 60256, Turkey

ABSTRACT

In this article we investigate the geometry of CR-lightlike submanifolds in an indefinite Kähler product manifold. In particular, we obtain the necessary and sufficient conditions for a CR-lightlike submanifold in an indefinite Kähler product manifold to be either CR-lightlike product, or D-geodesic, or D'-geodesic. We also study totally umbilical and curvature-invariant CR-lightlike submanifolds in $\bar{M}(c_1) \times \bar{M}(c_2)$.

Key words: indefinite Kähler manifold, CR-lightlike submanifold, CR-lightlike product, real space form, and complex space form

MSC(2000): 53C42, 53C15
CR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KÄHLER PRODUCT MANIFOLDS

1. INTRODUCTION

The general theory of lightlike submanifolds has been developed mainly by Bejancu and Duggal [7, 8]. They constructed principal vector bundles to a lightlike submanifold in a semi-Riemannian manifold and obtained Gauss–Weingarten formulae as well as other properties of this submanifold [7].

The study of the geometry of CR-submanifolds of a Kähler manifold was initiated by Bejancu and Chen and it has been developed by other authors [1–6, 12, 13].

The purpose of the present paper is to study CR-lightlike submanifolds of an indefinite Kähler product manifold which were defined in [7]. We have proved some properties of such submanifolds. We have also obtained necessary and sufficient conditions for CR-lightlike submanifolds in an indefinite Kähler product manifold to be either D-geodesic, D'-geodesic, CR-lightlike product, mixed-geodesic, totally-umbilical CR-lightlike, or curvature-invariant CR-lightlike submanifold.

Let \bar{M} be a real $(m + n)$-dimensional semi-Riemannian manifold, $m, n > 1$ and \bar{g} be a semi-Riemannian metric on \bar{M}. We denote by q the constant index of \bar{g} and suppose that $q > 0$. Now, let M be a submanifold of codimension n in \bar{M}. If the restriction $g = \bar{g}|_M$ of \bar{g} to M is still non-degenerate, then (M, g) becomes a semi-Riemannian manifold and it can be studied as a submanifold of a semi-Riemannian manifold \bar{M} [4, 9, 10]. A different situation appears when g is degenerate, then (M, g) is said to be a lightlike submanifold of \bar{M}. The geometry of lightlike submanifolds semi-Riemannian manifolds has been considered by many authors [7, 8].

2. CR-LIGHTLIKE SUBMANIFOLDS

Let \bar{M} be an m-dimensional lightlike submanifold of a semi-Riemannian manifold \bar{M}. In this case, there exists a smooth distribution on \bar{M}, called radical distribution such that

$$RadTM : M \rightarrow T_xM$$

$$x \rightarrow RadT_xM$$

$$RadT_xM = T_xM \cap T_xM^\perp, \text{ for each } x \in M$$

where

$$TM^\perp = \{V_x \in T_x\bar{M} : \bar{g}(V_x, W_x) = 0, \forall W_x \in T_xM\}$$

If rank of $RadTM$ is r ($r > 0$), M is called r-lightlike submanifold of \bar{M}. Moreover, there are four cases, as follows:

- Case 1. $0 < r < \min\{m, n\}$
- Case 2. $1 < r = n < m$
- Case 3. $1 < r = m < n$
- Case 4. $1 < r = m = n$.

According to these cases, the submanifold is called r-lightlike, coisotropic, isotropic, and totally lightlike submanifold, respectively [7].

Now, let M be an r-lightlike submanifold of \bar{M}. We consider the complementary distribution $S(TM)$ of $\text{Rad}TM$ on TM. Then we have the direct orthogonal sum

$$ TM = \text{Rad}TM \perp S(TM) $$

For the lightlike submanifold M, TM^\perp is not complementary to TM in $TM|_M$ since $\text{Rad}TM = TM \cap TM^\perp$ is a distribution on M of rank $r > 0$. Now, we consider a complementary vector bundle $S(TM^\perp)$ of $\text{Rad}TM$ in TM^\perp. It follows that $S(TM^\perp)$ is also non-degenerate with respect to \bar{g} and that TM^\perp has the following orthogonal direct decomposition

$$ TM^\perp = \text{Rad}TM \perp S(TM^\perp) $$

We call $S(TM)$ and $S(TM^\perp)$ a screen distribution and a screen transversal vector bundle of M, respectively. As $S(TM)$ is a non-degenerate vector bundle of $T\bar{M}|_M$, we put

$$ T\bar{M}|_M = S(TM) \perp S(TM^\perp) $$

where $S(TM)^\perp$ is the complementary orthogonal vector bundle of $S(TM)$ in $T\bar{M}|_M$. Note that $S(TM^\perp)$ is a vector subbundle of $S(TM)^\perp$ and both are non-degenerate, thus we have the following orthogonal direct decomposition

$$ S(TM)^\perp = S(TM^\perp) \perp S(TM^\perp)^\perp $$

Now, we recall the following Theorem from [7] for later use.

Theorem 2.1. Let $(M, g, S(TM), S(TM^\perp))$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}). Then there exists a complementary vector bundle $\ell tr(TM)$ called a lightlike transversal bundle of $\text{Rad}TM$ in $S(TM^\perp)^\perp$ and a basis of $\ell tr(TM)$ consists of smooth sections $\{N_1, N_2, ..., N_r\}$ of $S(TM^\perp)^\perp$ such that

$$ \bar{g}(N_i, \xi_j) = \delta_{ij}, \quad \bar{g}(N_i, N_j) = 0, \quad 1 \leq i, j \leq r $$

where $\{\xi_1, \xi_2, ..., \xi_r\}$ is a basis of $\text{Rad}TM$.

Now, we consider the vector bundle

$$ \ell tr(TM) = \ell tr(TM) \perp S(TM^\perp) $$

Thus we have

$$ T\bar{M} = TM \oplus \ell tr(TM) $$

$$ = S(TM) \perp S(TM^\perp) \perp \{\text{Rad}TM \oplus \ell tr(TM)\} $$

Let ∇ be the Levi–Civita connection on \bar{M}. Then we have

$$ \nabla_X Y = \nabla_X Y + h(X, Y), \quad \text{for any } X, Y \in \Gamma(TM) $$

and
\[\nabla_X V = -A_Y X + \nabla_X V \quad \text{for} \quad X \in \Gamma(TM) \quad \text{and} \quad V \in \Gamma(tr(M)) \] (9)

where \(\nabla \) is the linear connection on \(M \) and \(\Gamma(TM) \) denotes the set of differentiable vector fields on \(M \). We denote the Riemannian curvature tensors of \(M \) and \(\Gamma(TM) \) by \(R \) and \(\bar{R} \), respectively, we have
\[\bar{R}(X,Y)Z = R(X,Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X \] (10)

\[+ (\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z) \]

for any \(X,Y,Z \in \Gamma(TM) \), where the covariant derivative of \(h \) is defined by
\[(\nabla_X h)(Y,Z) = \nabla_{X}h(Y,Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) \] (11)

for any \(X,Y,Z \in \Gamma(TM) \). Using the projectors \(L : tr(TM) \rightarrow \ell tr(TM) \) and \(S : tr(TM) \rightarrow S(TM^\perp) \) we have
\[\nabla_X Y = \nabla_X Y + h^s(X,Y) \] (12)
\[\nabla_X N = -A_N X + \nabla_X^s N + D^s(X,N) \] (13)

and
\[\nabla_X W = -A_W X + \nabla_X^s W + D^s(X,W) \] (14)

for any \(X,Y \in \Gamma(TM) \), \(N \in \Gamma(\ell tr(TM)) \), and \(W \in \Gamma(S(TM^\perp)) \), where \(Nh(X,Y) = h^s(X,Y) \), \(Sh(X,Y) = h^s(X,Y) \), \(\nabla^s_X N \), \(D^s(X,W) \in \Gamma(\ell tr(TM)) \), \(\nabla^s_X W \), \(D^s(X,W) \in \Gamma(S(TM^\perp)) \), and \(\nabla_X Y, A_W X \in \Gamma(TM) \). By using (12), (13), and (14) we obtain
\[g(h^s(X,Y), W) + g(Y, D^s(X,W)) = g(A_W X, Y) \] (15)

Let \(T \) be the projection morphism of \(TM \) on \(S(TM) \) with respect to the orthogonal decomposition of \(TM \). Then we have
\[\nabla_X TY = \nabla^s_X TY + h^s(X,TY) \quad \text{for any} \quad X,Y \in \Gamma(TM) \] (16)

and
\[\nabla_X \xi = -A^s_\xi X + \nabla^s_X \xi \quad \text{for any} \quad \xi \in \Gamma(RadTM) \] (17)

where \(h^s(X,TY) \), \(\nabla^s_X \xi \in \Gamma(RadTM) \) and \(A^s_\xi X, \nabla^s_X TY \in \Gamma(S(TM)) \). Thus we have the following equations
\[g(h^s(X,TY), \xi) = g(A^s_\xi X, TY), \quad g(h^s(X,TY), N) = g(A_N X, TY) \] (18)
\[g(A^s_\xi TX, TY) = g(TX, A^s_\xi TY), \quad A^s_\xi \xi = 0 \] (19)

and
\[\bar{g}(A_N X, TY) = \bar{g}(N, \nabla_X TY) \] (20)
In general, the induced connection on M is not a metric connection. Since ∇ is a metric connection, ∇g is obtained from (12) and (13) as

$$(\nabla_X g)(Y, Z) = \ddot{g}(h^\ell(X, Y), Z) + \ddot{g}(h^\ell(X, Z), Y)$$ \hspace{1cm} (21)$$

for any $X, Y, Z \in \Gamma(TM)$ [7].

Let $(\bar{M}, \bar{I}, \ddot{g})$ be a real $2m$-dimensional indefinite Kähler manifold and M be a real n-dimensional lightlike submanifold of \bar{M}. We say that M is a CR-lightlike submanifold if the following two conditions are satisfied:

A. $\bar{J}(\text{Rad}TM)$ is a distribution on M such that

$$\text{Rad}TM \cap \bar{J}(\text{Rad}TM) = \{0\}$$

B. There exist vector bundles $S(TM)$, $S(TM^\perp)$, $\elltr(TM)$, D_o and D^\prime over M such that

$$S(TM) = \{\bar{J}(\text{Rad}TM) \oplus D^\prime\} \perp D_o, \quad \bar{J}(D_o) = D_o, \quad \bar{J}(D^\prime) = L_1 \perp L_2$$

where D_o is a non-degenerate distribution on M, and L_1 and L_2 are vector subbundles of $\elltr(TM)$ and $S(TM^\perp)$, respectively.

From the above definition and by using (2) we obtain that the tangent bundle of a CR-lightlike submanifold is decomposed as follows

$$TM = D \oplus D^\prime$$

where

$$D = \text{Rad}TM \perp \bar{J}(\text{Rad}TM) \perp D_o$$ \hspace{1cm} (22)$$

(For details, we refer to [7].)

3. INDEFINITE KÄHLER PRODUCT MANIFOLDS

Let $(\bar{M}_1, \bar{J}_1, \ddot{g}_1)$ and $(\bar{M}_2, \bar{J}_2, \ddot{g}_2)$ be real $2m_1$ and $2m_2$-dimensional indefinite Kähler manifolds with constant indexes $q_1 > 0$ and $q_2 > 0$, respectively. Let $\bar{M}_1 \times \bar{M}_2$ be a semi-Riemannian product of the semi-Riemannian manifolds \bar{M}_1 and \bar{M}_2. We denote the projection mappings of $\Gamma(T(\bar{M}_1 \times \bar{M}_2))$ to $\Gamma(T\bar{M}_1)$ and $\Gamma(T\bar{M}_2)$ by P and Q, respectively. Then we have

$$P^2 = P, \quad Q^2 = Q, \quad P + Q = I, \quad PQ = QP = 0$$

If we put $F = P - Q$, then we can easily see that $F^2 = I$. We define a semi-Riemannian metric of $\bar{M}_1 \times \bar{M}_2$ by

$$\ddot{g}(X, Y) = \ddot{g}_1(PX, PY) + \ddot{g}_2(QX, QY), \quad \text{for any} \quad X, Y \in \Gamma(T(\bar{M}_1 \times \bar{M}_2))$$

Orthonormal bases of $T_x\bar{M}_1$ and $T_y\bar{M}_2$ combine to give orthonormal bases of $T_{(x, y)}(\bar{M}_1 \times \bar{M}_2)$ for each $(x, y) \in \bar{M}_1 \times \bar{M}_2$. Thus the index of \ddot{g} has constant value $q_1 + q_2$. Furthermore, $(\bar{M}_1 \times \bar{M}_2, \ddot{g})$ becomes a semi-Riemannian manifold with constant index $(q_1 + q_2)$.

If we define a mapping by $\bar{J} = \bar{J}_1 P + \bar{J}_2 Q$ of $T(\bar{M}_1 \times \bar{M}_2)$ to $T(\bar{M}_1 \times \bar{M}_2)$, then we can easily see that

$$\bar{J}^2 = -I, \quad \bar{J}_1 P = PJ, \quad \bar{J}_2 Q = QJ, \quad \text{and} \quad F\bar{J} = JF$$
Thus \(\bar{J} \) is an almost complex structure on \(\bar{M}_1 \times \bar{M}_2 \). Moreover, if \((\bar{M}_1, \bar{J}_1, \bar{g}_1)\) and \((\bar{M}_2, \bar{J}_2, \bar{g}_2)\) are both indefinite almost Hermitian manifolds, then we have

\[
\bar{g}(\bar{J}X, \bar{J}Y) = \bar{g}_1(\bar{J}_1PX, P\bar{J}Y) + \bar{g}_2(Q\bar{J}X, Q\bar{J}Y)
+ \bar{g}_2(\bar{J}_2QX, \bar{J}_2QY)
= \bar{g}_1(\bar{J}_1PX, \bar{J}_1PY) + \bar{g}(\bar{J}_2QX, \bar{J}_2QY)
= \bar{g}_1(\bar{P}X, \bar{P}Y) + \bar{g}_2(QX, QY) = \bar{g}(X, Y)
\]

for any \(X, Y \in \Gamma(T(\bar{M}_1 \times \bar{M}_2)) \). Thus \((\bar{M}_1 \times \bar{M}_2, \bar{J}, \bar{g})\) is an indefinite almost Hermitian manifold. If we denote the Levi–Civita connection on \(\bar{M}_1 \times \bar{M}_2 \) by \(\bar{\nabla} \), then by direct calculations, we obtain

\[
(\bar{\nabla}_X \bar{J})Y = (\bar{\nabla}_X \bar{J}_1)PY + (\bar{\nabla}_Q \bar{J}_2)QY + (\bar{\nabla}_Q \bar{J})PY + (\bar{\nabla}_P \bar{J})QY
\]

for any \(X, Y \in \Gamma(T(\bar{M}_1 \times \bar{M}_2)) \). If \((\bar{M}_1 \times \bar{M}_2, \bar{J}, \bar{g})\) is an indefinite Kähler manifold, then we have

\[
(\bar{\nabla}_P \bar{J}_1)PY + (\bar{\nabla}_Q \bar{J}_2)QY + (\bar{\nabla}_Q \bar{J})PY + (\bar{\nabla}_P \bar{J})QY = 0 \tag{23}
\]

Here taking \(FX \) instead of \(X \), we obtain

\[
(\bar{\nabla}_P \bar{J}_1)PY + (\bar{\nabla}_Q \bar{J}_2)QY - (\bar{\nabla}_Q \bar{J})PY - (\bar{\nabla}_P \bar{J})QY = 0 \tag{24}
\]

From Equations (23) and (24), we get

\[
(\bar{\nabla}_P \bar{J}_1)PY + (\bar{\nabla}_Q \bar{J}_2)QY = 0
\]

which implies that \((\bar{M}_1, \bar{J}_1, \bar{g}_1)\) and \((\bar{M}_2, \bar{J}_2, \bar{g}_2)\) are both indefinite Kähler manifolds. In the rest of this paper, we denote an indefinite Kähler product manifold by \((\bar{M}, \bar{J}, \bar{g})\).

If \(\bar{M}_1 \) and \(\bar{M}_2 \) are indefinite complex space forms with constant holomorphic sectional curvatures \(c_1, c_2 \) and we denote them by \(\bar{M}_1(c_1) \) and \(\bar{M}_2(c_2) \), respectively, then the Riemannian curvature tensor \(\bar{R} \) of Kähler product manifold \(\bar{M}_1(c_1) \times \bar{M}_2(c_2) \) is given by the formula

\[
\bar{R}(X, Y)Z = \frac{1}{16}(c_1 + c_2)[\bar{g}(Y, Z)X - \bar{g}(X, Z)Y + \bar{g}(\bar{J}Y, Z)\bar{J}X - \bar{g}(\bar{J}X, Z)\bar{J}Y
+ 2\bar{g}(X, \bar{J}Y)\bar{J}Z + 2\bar{g}(F\bar{J}X, Z)F\bar{J}Y - \bar{g}(F\bar{J}X, Z)F\bar{J}X
- \bar{g}(F\bar{J}X, Z)F\bar{J}Y + 2\bar{g}(F\bar{J}X, Y)F\bar{J}Z]
+ \frac{1}{16}(c_1 - c_2)[\bar{g}(F\bar{J}Y, Z)X - \bar{g}(F\bar{J}X, Z)Y + \bar{g}(\bar{J}Y, Z)\bar{J}X - \bar{g}(\bar{J}X, Z)\bar{J}Y
+ \bar{g}(\bar{J}Y, Z)\bar{J}X - \bar{g}(\bar{J}X, Z)\bar{J}Y + 2\bar{g}(F\bar{J}Y, Z)F\bar{J}Z]
+ 2\bar{g}(F\bar{J}Y, \bar{J}Z) + 2\bar{g}(X, \bar{J}Y)\bar{J}FZ \tag{25}
\]

for all \(X, Y, Z \in \Gamma(T(\bar{M}_1 \times \bar{M}_2)) \) [9].
4. CR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KÄHLER PRODUCT MANIFOLD

The following corollary is needed [7].

Corollary 4.1. Let \((M_1, g_1)\) and \((M_2, g_2)\) be a lightlike real hypersurface and a non-degenerate real hypersurface of the indefinite almost manifolds \((\tilde{M}_1, \tilde{J}_1, \tilde{g}_1)\) and \((\tilde{M}_2, \tilde{J}_2, \tilde{g}_2)\), respectively. Then \((M_1 \times M_2, g_1 \times g_2)\) is a CR-lightlike submanifold of codimension 2 of \((\tilde{M}_1 \times \tilde{M}_2, \tilde{J}_1 \times \tilde{J}_2, \tilde{g}_1 \times \tilde{g}_2)\).

Example 4.2. We identify \(C_q^m\) with \((\mathbb{R}^{2m}_{2q}, \tilde{J}, \tilde{g})\), where \(\tilde{J}\) and \(\tilde{g}\) are, respectively, defined by

\[
\tilde{J}(x^1, y^1, ..., x^m, y^m) = (-y^1, x^1, ..., -y^m, x^m)
\]

and

\[
\tilde{g}((x^1, y^1, ..., x^m, y^m), (u^1, v^1, ..., u^m, v^m)) = -\sum_{i=1}^{q}\{x^i u^i + y^i v^i\} + \sum_{j=q+1}^{m}\{x^j u^j + y^j v^j\}
\]

Now, Let \(\mathbb{R}^{2m}_{2q}\) and \(\mathbb{R}^{2n}_{2s}\) be two indefinite Kähler flat spaces. The lightlike cone \(\bigwedge^{2m-1}_{2q-1}\) of \(\mathbb{R}^{2m}_{2q}\) given by the equation

\[
\sum_{i=1}^{q}\{(x^i)^2 + (y^i)^2\} - \sum_{j=q+1}^{m}\{(x^j)^2 + (y^j)^2\} = 0, \quad X \neq 0
\]

is a lightlike hypersurface of \(\mathbb{R}^{2m}_{2q}\). Moreover, consider the pseudosphere \(S^{2n-1}_{2s}(r)\) of \(\mathbb{R}^{2n}_{2s}\) given by

\[
S^{2n-1}_{2s}(r) = \{X \in \mathbb{R}^{2n}_{2s}; -\sum_{i=1}^{s}\{(x^i)^2 + (y^i)^2\} + \sum_{j=s+1}^{n}\{(x^j)^2 + (y^j)^2\} = r^2\}
\]

where \(X = (x^1, y^1, ..., x^n, y^n) \in \mathbb{R}^{2n}\). Then from Corollary 4.1, \(\bigwedge^{2m-1}_{2q-1} \times S^{2n-1}_{2s}(r)\) is a CR-lightlike submanifold of codimension 2 of \(\mathbb{R}^{2(n+m)}_{2(s+q)}\).

Let \(M\) be a CR-lightlike submanifold of an indefinite Kähler product manifold \((\tilde{M}, \tilde{J}, \tilde{g})\). If we denote by \(R\) and \(S\) the projections on \(D\) and \(D^\perp\), respectively, then we have

\[
\tilde{J}X = fX + \omega X, \quad \text{for any } X \in \Gamma(TM)
\]

(26)

where \(fX = \tilde{J}RX\) and \(\omega X = \tilde{J}SX\). Clearly, \(f\) is a tensor field of type \((1,1)\) and \(\omega\) is a \(\Gamma(L_1 \perp L_2)\)-valued 1-form on \(M\). On the other hand, we set

\[
\tilde{J}V = BV + CV, \quad \text{for any } V \in \Gamma(tr(TM))
\]

(27)

where \(BV\) and \(CV\) are sections of \(\Gamma(TM)\) and \(\Gamma(tr(TM))\), respectively.

Theorem 4.3. Let \(M\) be a coisotropic submanifold of an indefinite Kähler product manifold \(\tilde{M}_1(c_1) \times \tilde{M}_2(c_2)\) with \(c_1, c_2 \neq 0\). Then \(M\) is a CR-lightlike coisotropic submanifold with \(D_0 \neq \{0\}\) and \(D' = \tilde{J}(tr(TM))\) if and only if the following conditions are satisfied:
(i) The maximal complex subspaces of T_xM, $x \in M$, define a distribution

$$ D = TM^+ \perp \bar{J}(TM^+) \perp D_o $$

where D_o is a non-degenerate non-zero almost complex distribution on M.

(ii) There exists a lightlike transversal vector bundle $\ell tr(TM)$ such that the Riemannian curvature tensor of $M_1(c_1) \times M_2(c_2)$ satisfies

$$ \bar{g}(\bar{R}(X,Y)N, N') = 0 $$

for any $X,Y \in \Gamma(D_o)$ and $N,N' \in \Gamma(\ell tr(TM))$.

Proof. Let us assume that M is a CR-lightlike coisotropic submanifold of an indefinite $M_1(c_1) \times M_2(c_2)$ with $D_o \neq 0$, $c_1, c_2 \neq 0$, and $D' = \bar{J}(\ell tr(TM))$. Since $\text{Rad}TM = TM^+$, from (22) we get

$$ TM \cap \bar{J}(TM) = D = TM^+ \perp \bar{J}(TM^+) \perp D_o $$

and D_o satisfies the condition (i). From Equation (25) we have

$$ \bar{R}(X,Y)N = \frac{1}{8}(c_1 + c_2)\{\bar{g}(X,JY)\bar{J}N + \bar{g}(FX,JY)F\bar{J}N\} $$

$$ + \frac{1}{8}(c_1 - c_2)\{\bar{g}(FX,JY)\bar{J}N + \bar{g}(X,JY)F\bar{J}N\} $$

for all $X,Y \in \Gamma(D_o)$ and $N \in \Gamma(\ell tr(TM))$. Take an $\ell tr(TM)$ corresponding to the screen distribution $S(TM)$ from condition (B), by using (25) and taking into account that D_o is an almost complex distribution and $\ell tr(TM)$ is orthogonal to both D' and D_o, we obtain (28).

Conversely, let us assume that conditions (i) and (ii) are satisfied. Then from (i), we conclude that $\bar{J}(TM^+)$ is a distribution on M such that $TM^+ \cap \bar{J}(TM^+) = \{0\}$, that is, the condition (A) is satisfied. Now, we choose $S(TM)$ such that it contains $\bar{J}(TM^+) \perp D_o$ and consider the corresponding lightlike transversal vector bundle $\ell tr(TM)$. Taking into account that $\ell tr(TM)$ is orthogonal to $\bar{J}(TM^+)$, we conclude

$$ \bar{g}(\bar{J}N, \xi) = -\bar{g}(N, \xi) = 0, \forall N \in \Gamma(\ell tr(TM)) \text{ and } \xi \in \Gamma(TM^+) $$

Thus $\bar{J}(\ell tr(TM))$ is a distribution on M. Moreover, by using (25) and (28) we obtain

$$ \bar{g}(X,JY)\{(c_1 + c_2)\bar{g}(\bar{J}N, N') + (c_1 - c_2)\bar{g}(F\bar{J}N, N')\} $$

$$ \bar{g}(FX,JY)\{(c_1 + c_2)\bar{g}(F\bar{J}N, N') + (c_1 - c_2)\bar{g}(\bar{J}N, N')\} = 0 $$

for any $X,Y \in \Gamma(D_o)$ and $N, N' \in \Gamma(\ell tr(TM))$. As vector fields X and FX are independent, $c_1, c_2 \neq 0$ and $D_o \neq 0$, it follows that

$$ 4c_1c_2\bar{g}(\bar{J}N, N') = 0 $$

Thus $\bar{J}(\ell tr(TM)) \cap TM^+ = \{0\}$. Since $\bar{J}(\ell tr(TM))$ is orthogonal to $TM^+ \oplus \ell tr(TM)$, from Equation (7) we obtain $D' = \bar{J}(\ell tr(TM))$ is a vector subbundle of $S(TM)$. On the other hand, $D' \cap \bar{J}(TM^+) = \{0\}$ and D' is orthogonal to D_o, we obtain

$$ S(TM) = \{\bar{J}(TM^+) \oplus D'\} \perp D_o \perp D_1 $$
where we have to show that \(D_1 = \{0\} \). First, by direct calculations, it follows that \(D_1 \) is an almost complex distribution. Since \(D_1 \cap D = \{0\} \) and \(D \) is the maximal almost complex distribution on \(M \), we conclude \(D_1 = \{0\} \). As \(J(D^\perp) = \ell tr(TM) \), the condition (B) is also satisfied. Thus the proof is complete. \(\square \)

From the general theory of semi-invariant submanifolds of Kähler manifolds, we have the following theorem [7].

Theorem 4.4. Let \(M \) be a CR-lightlike submanifold of an indefinite Kähler product manifold \(\bar{M}_1 \times \bar{M}_2 \). Then we have the following assertions

(i) The almost complex distribution \(D \) is integrable if and only if the second fundamental form of \(M \) satisfies

\[
h(X, JY) = h(JX, Y)
\]

for any \(X, Y \in \Gamma(D) \).

(ii) The totally real distribution \(D' \) is integrable if and only if the shape operator of \(M \) satisfies

\[
A_{jZ}U = A_{jU}Z
\]

for any \(Z, U \in \Gamma(D') \).

Let \(M \) be a CR-lightlike submanifold of an indefinite Kähler product manifold \(\bar{M}_1 \times \bar{M}_2 \). \(M \) is said to be a mixed-geodesic submanifold if the second fundamental form of \(M \) satisfies \(h(X, Z) = 0 \) for any \(X \in \Gamma(D) \) and \(Z \in \Gamma(D') \).

Theorem 4.5. Let \(M \) be a proper CR-lightlike submanifold of an indefinite Kähler product manifold \(\bar{M}_1 \times \bar{M}_2 \). \(M \) is a mixed-geodesic CR-lightlike submanifold if and only if the following conditions are satisfied:

(1) \(A^*_\xi X \) has no component in \(\Gamma(\bar{J}L_2 \perp \bar{J}RadTM) \)

(2) \(A_W X \) has no component in \(\Gamma(\bar{J}L_2 \perp \bar{J}RadTM) \)

for any \(X \in \Gamma(D_\alpha), \xi \in \Gamma(RadTM) \) and \(W \in \Gamma(S(TM^\perp)) \).

Proof. We have to show that \(\bar{g}(h(X, Z), \xi) = \bar{g}(h(X, Z), W) = 0 \), for any \(X \in \Gamma(D), Z \in \Gamma(D'), \xi \in \Gamma(RadTM) \) and \(W \in \Gamma(S(TM^\perp)) \). Thus by using (12), (13), and (16) we have

\[
\bar{g}(h(X, Z), \xi) = \bar{g}(\bar{\nabla}_X Z, \xi) = -\bar{g}(\bar{\nabla}_X \xi, Z) = -\bar{g}(\nabla_X \xi, Z)
\]

and

\[
\bar{g}(h(X, Z), W) = \bar{g}(\bar{\nabla}_X Z, W) = -\bar{g}(\bar{\nabla}_X W, Z) = \bar{g}(A_W X, Z)
\]

for any \(X \in \Gamma(D_\alpha), Z \in \Gamma(D'), \xi \in \Gamma(RadTM), \) and \(W \in \Gamma(S(TM^\perp)) \). Thus \(M \) is a mixed-geodesic submanifold if and only if the conditions (1) and (2) are satisfied. \(\square \)

Let \(M \) be a proper CR-lightlike submanifold of an indefinite Kähler product manifold \(\bar{M}_1 \times \bar{M}_2 \). \(M \) is said to be a \(D \)-geodesic (resp. \(D' \)-geodesic) submanifold if the second fundamental form of \(M \) satisfies \(h(X, Y) = 0 \) (resp. \(h(Z, W) = 0 \)) for any \(X, Y \in \Gamma(D) \) (resp. \(Z, W \in \Gamma(D') \)).
The Arabian Journal for Science and Engineering, Volume 34, Number 1A January 2009

Mehmet Atçeken

Theorem 4.6. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\bar{M}_1 \times \bar{M}_2$. M is a D-geodesic CR-lightlike submanifold if and only if the following conditions are satisfied:

1. $A^*_\xi X$ has only component in $\Gamma(\bar{J}RadTM \oplus \bar{J}L_1)$

2. $\bar{g}(A_W X, Y) = \bar{g}(D^f(X, W), Y)$
 for any $X, Y \in \Gamma(D)$, $W \in \Gamma(S(TM)^{\perp})$ and $\xi \in \Gamma(RadTM)$.

Proof. From (12), (17), and taking into account that $\bar{\nabla}$ is a Levi–Civita connection, we have

$$\bar{g}(h(X, Y), \xi) = \bar{g}(\nabla_X Y, \xi) = X \bar{g}(Y, \xi) - \bar{g}(\nabla_X \xi, Y)$$

$$= -\bar{g}(\nabla_X Y, \xi) - \bar{g}(h(X, \xi), Y)$$

$$= \bar{g}(A^*_\xi X, Y) - \bar{g}(\nabla_X \xi, \xi)$$

$$= \bar{g}(A^*_\xi X, Y)$$

and by using (14) we get

$$\bar{g}(h(X, Y), W) = \bar{g}(A_W X, Y) - \bar{g}(h(X, Y), W)$$

which proves our assertion, for any $X, Y \in \Gamma(D)$, $\xi \in \Gamma(RadTM)$, and $W \in \Gamma(S(TM)^{\perp})$, where $Y = \xi + J\xi + Y_o \in \Gamma(RadTM \perp JRadTM \perp D_o)$. □

Theorem 4.7. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\bar{M}_1 \times \bar{M}_2$. M is a D^f-geodesic CR-lightlike submanifold if and only if the following conditions are satisfied:

1. $A^*_\xi Z$ has no component in $\Gamma(\bar{J}L_2 \perp JRadTM)$

2. $A_W Z$ has only component in $\Gamma(\{RadTM \perp D_o\} \oplus J\bar{L}_1)$,
 for any $Z \in \Gamma(D^f)$, $\xi \in \Gamma(RadTM)$ and $W \in \Gamma(S(TM)^{\perp})$.

Proof. By using (12), (14), (16), and taking into account that $\bar{\nabla}$ is a Levi–Civita connection, by direct calculations, we obtain

$$\bar{g}(h(Y, Z), \xi) = \bar{g}(A^*_\xi Z, Y)$$

and

$$\bar{g}(h(Y, Z), W) = \bar{g}(\nabla_Z Y, W) = Z \bar{g}(Y, W) - \bar{g}(\nabla_Z W, Y)$$

$$= -\bar{g}(\nabla_Z W, Y) - \bar{g}(A_W Z, Y) - \bar{g}(\nabla^*_Z W, Y) - \bar{g}(D^f(Z, W), Y)$$

$$= \bar{g}(A_W Z, Y)$$

for any $Z, Y \in \Gamma(D^f)$, $\xi \in \Gamma(RadTM)$, and $W \in \Gamma(S(TM)^{\perp})$. Thus the proof is complete. □

Next, we recall the following general theory from [7] for later use.

146 The Arabian Journal for Science and Engineering, Volume 34, Number 1A January 2009
Let M be a proper CR-lightlike submanifold of a Kähler manifold \tilde{M} such that D and D' define totally geodesic foliations on M. In this case, M is locally represented as a product manifold $M_1 \times M_2$, where M_1 and M_2 are integral manifolds leaves of D and D', respectively, and they both are totally geodesic immersed in M. Then M is said to be a CR-lightlike product.

Theorem 4.8. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\tilde{M}_1 \times \tilde{M}_2$. M is a CR-lightlike product if and only if $(\nabla_X f)Y = 0$ for any $X, Y \in \Gamma(TM)$.

Proof. Let us assume that M is a CR-lightlike product. Then the distributions D and D' are integrable and their leaves are totally geodesic in M. By using (8), (26), and (27) we get

$$\bar{\nabla}_Z fX + h(Z, fX) = \bar{J}\nabla_Z X + \bar{J}h(Z, X)$$

for any $X \in \Gamma(D)$ and $Z \in \Gamma(TM)$. Thus we have

$$\nabla_Z fX = f\nabla_Z X + Bh(Z, X),$$

that is, $(\nabla_Z f)X = Bh(Z, X)$ (30)

where $(\nabla_Z f)X \in \Gamma(D)$ and $Bh(Z, X) \in \Gamma(D')$. Since D is an invariant distribution and M is a CR-lightlike product, we have

$$\bar{g}(Bh(Z, X), Y) = \bar{g}(\bar{J}h(Z, X), Y) - \bar{g}(Ch(Z, X), Y)$$

$$= -\bar{g}(h(Z, X), \bar{J}Y) - \bar{g}(Ch(Z, X), Y)$$

$$= -\bar{g}(h(Z, X), \bar{J}\xi - \xi + \bar{J}Y_0) - \bar{g}(Ch(Z, X), \xi + \bar{J}\xi + Y_0)$$

$$= \bar{g}(h(Z, X), \xi) - \bar{g}(Ch(Z, X), \xi)$$

$$= \bar{g}(h(Z, X), \xi) - \bar{g}(\bar{J}Ch(Z, X), \bar{J}\xi)$$

$$= \bar{g}(\nabla_Z X, \xi) = \bar{g}(\nabla_Z JX, \bar{J}\xi)$$

$$= \bar{g}(\nabla_Z fX, \bar{J}\xi) = 0$$

for any $Y \in \Gamma(D)$. Thus we conclude that $Bh(Z, X)$ has no component in $\Gamma(D)$, which implies that $(\nabla_Z f)X = 0$, where $Y = \xi + \bar{J}\xi + Y_0 \in \Gamma(RadTM \perp \bar{J}RadTM \perp D_0)$.

Since M is a CR-lightlike product, we have $\nabla_Z W \in \Gamma(D')$, for any $W \in \Gamma(D')$ and $Z \in \Gamma(TM)$. Thus we get

$$(\nabla_Z f)W = \nabla_Z fW - f(\nabla_Z W) = 0$$

Conversely, we suppose that $\nabla f = 0$. Then we have

$$f\nabla_Y X = \nabla_Y fX \in \Gamma(D), \ \text{for any } X, Y \in \Gamma(D)$$
and
\[f\nabla_Z W = \nabla_Z fW = 0, \quad \text{for any } Z, W \in \Gamma(D') \]
which implies that \(\nabla_Z W \in \Gamma(D') \). Thus we have the leaves of distributions \(D \) and \(D' \) are totally geodesic submanifolds in \(M \). This completes the proof. \(\square \)

Theorem 4.9. Let \(M \) be a proper CR-lightlike submanifold of an indefinite Kähler product manifold \(\hat{M}_1 \times \hat{M}_2 \). \(M \) is a CR-lightlike product if and only if \(Bh(Z, X) = 0 \), for any \(Z \in \Gamma(TM) \) and \(X \in \Gamma(D) \).

Proof. We suppose that \(M \) is a CR-lightlike product. Then we conclude that both distributions \(D \) and \(D' \) are integrable and their leaves are totally geodesic submanifolds in \(M \). From (30) we have
\[Bh(Z, X) = 0, \quad \text{for any } Z \in \Gamma(TM), \quad X \in \Gamma(D) \]
Conversely, if \(Bh(Z, X) = 0 \), then from (30) we get
\[(\nabla_Z f)X = 0, \quad \text{for any } Z \in \Gamma(TM), \quad X \in \Gamma(D) \]
which implies that \(D \) is totally geodesic in \(M \). Moreover, we conclude
\[f\nabla_Z W = \nabla_Z fW = 0, \quad \text{for any } Z \in \Gamma(TM), \quad W \in \Gamma(D') \]
which implies that \(\nabla_Z W \in \Gamma(D') \). Thus \(D' \) is also totally geodesic in \(M \), which proves our assertion. \(\square \)

As a consequence of Theorem 4.8 and Theorem 4.9 we have

Theorem 4.10. Let \(M \) be a proper CR-lightlike submanifold of an indefinite Kähler product manifold \(\hat{M}_1 \times \hat{M}_2 \). Then \(M \) is a CR-lightlike product if \(M \) is a totally geodesic lightlike submanifold of an indefinite Kähler product manifold \(\hat{M}_1 \times \hat{M}_2 \).

Taking into account that the curvature tensor field of \(\hat{M}_1(c_1) \times \hat{M}_2(c_2) \) is given by (25), we have special forms for the structure equations of Gauss and Codazzi for the immersion of a CR-lightlike submanifold \(M \) in \(\hat{M}_1(c_1) \times \hat{M}_2(c_2) \). Thus the equation of Gauss becomes
\[
R(X, Y)Z = \frac{1}{16}(c_1 + c_2)\{\bar{g}(Y, Z)X - \bar{g}(X, Z)Y + \bar{g}(\bar{J}Y, Z)fX \\
- \bar{g}(\bar{J}X, Z)fY + 2\bar{g}(X, \bar{J}Y)fZ + 2\bar{g}(FY, Z)FX - \bar{g}(FX, Z)FY \\
+ \bar{g}(F\bar{J}Y, Z)FfX - \bar{g}(F\bar{J}X, Z)FfY + 2\bar{g}(FX, \bar{J}Y)FfZ \} \\
+ \frac{1}{16}(c_1 - c_2)\{\bar{g}(FY, Z)X - \bar{g}(FX, Z)Y + \bar{g}(Y, Z)FX - \bar{g}(X, Z)FY \\
+ \bar{g}(F\bar{J}Y, Z)fX - \bar{g}(F\bar{J}X, Z)fY + \bar{g}(\bar{J}Y, Z)FFX \\
- \bar{g}(\bar{J}X, Z)FFY + 2\bar{g}(FX, \bar{J}Y)FFZ + 2\bar{g}(X, \bar{J}Y)FFZ \}
\]
\[+ A_{h(Y, Z)}X - A_{h(X, Z)}Y \tag{31} \]
for all X,Y,Z tangent to M, where R is the curvature tensor of M. The equation of Codazzi is given by

$$ (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z) = \frac{1}{16}(c_1 + c_2)\{\bar{g}(JY,Z)\omega X - \bar{g}(JX,Z)\omega Y + 2\bar{g}(FX,JY)F\omega Z + \bar{g}(FJX,Z)F\omega Y \\
+ 2\bar{g}(FX,JY)F\omega Z\} + \frac{1}{16}(c_1 - c_2)\{\bar{g}(FJY,Z)\omega X - \bar{g}(FJX,Z)\omega Y + 2\bar{g}(FJX,JY)\omega Z - \bar{g}(FJX,Z)F\omega Y \\
+ 2\bar{g}(FX,JY)\omega Z\} $$

\[(32) \]

for all X,Y,Z tangent to M, where h is the second fundamental of M.

Theorem 4.11. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\tilde{M}_1 \times \tilde{M}_2$. There exist no proper curvature-invariant CR-lightlike submanifolds in $\tilde{M}_1(c_1) \times \tilde{M}_2(c_2)$ with $c_1,c_2 \neq 0$.

Proof. We suppose that M is a proper curvature-invariant CR-lightlike submanifold of $\tilde{M}_1(c_1) \times \tilde{M}_2(c_2)$. By using (32) we have

$$ (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z) = \frac{1}{8}(c_1 + c_2)\{\bar{g}(JY,Z)\omega X + \bar{g}(FX,JY)F\omega Z\} + \frac{1}{8}(c_1 - c_2)\{\bar{g}(FX,JY)\omega X + \bar{g}(FJX,Z)\omega Y + 2\bar{g}(FJX,JY)\omega Z + \bar{g}(FJX,Z)F\omega Y \\
+ 2\bar{g}(FX,JY)F\omega Z\} $$

\[(33) \]

for any $X,Y \in \Gamma(D_o)$ and $Z \in \Gamma(D')$, which implies that

$$ \bar{g}(X,JY)\{(c_1 + c_2)\omega Z + (c_1 - c_2)F\omega Z\} \\
+ \bar{g}(FX,JY)\{(c_1 + c_2)F\omega Z + (c_1 - c_2)\omega Z\} = 0. $$

Since vector fields X and FX are independent, we conclude

$$ (c_1 + c_2)\omega Z + (c_1 - c_2)F\omega Z = 0 $$

and

$$ (c_1 + c_2)F\omega Z + (c_1 - c_2)\omega Z = 0. $$

This implies that

$$ 4c_1c_2\omega Z = 0 $$

As $D' \neq \{0\}$ and $c_1,c_2 \neq 0$, this is impossible. Thus the proof is complete. \qed

We have the following result for a totally geodesic submanifold to be a curvature-invariant submanifold.
Theorem 4.12. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\bar{M}_1 \times \bar{M}_2$. Then there exist no proper totally geodesic CR-lightlike submanifolds in $\bar{M}_1(c_1) \times \bar{M}_2(c_2)$ with $c_1, c_2 \neq 0$.

Theorem 4.13. Let M be a proper CR-lightlike submanifold of an indefinite Kähler product manifold $\bar{M}_1 \times \bar{M}_2$. Then there exist no proper totally umbilical CR-lightlike submanifolds in $\bar{M}_1(c_1) \times \bar{M}_2(c_2)$ with $c_1 + c_2 \neq 0$.

Proof. We suppose that M is a proper totally umbilical CR-lightlike submanifold of an indefinite Kähler product manifold $\bar{M}_1(c_1) \times \bar{M}_2(c_2)$, then there is a smooth transversal vector field $H \in \Gamma(tr(TM))$, called transversal vector field of M in $\bar{M}_1 \times \bar{M}_2$, such that

$$h(X, Y) = \bar{g}(X, Y)H, \quad \text{for any } X, Y \in \Gamma(TM) \quad (34)$$

By using the Equations (11) and (34), we obtain

$$(\nabla_X h)(Y, Z) = \bar{g}(Y, Z)\nabla_X^⊥ H \quad (35)$$

for any $X, Y \in \Gamma(TM)$. From the Gauss formulae, we have

$$\bar{g}(\bar{R}(Z, X)JX, JZ) = \bar{g}((\nabla_Z h)(X, JX), JZ) - \bar{g}((\nabla_X h)(Z, JX), JZ)$$

$$\quad = \bar{g}(X, JX)\bar{g}(\nabla_X^⊥ H, JZ) - \bar{g}(Z, JX)\bar{g}(\nabla_X^⊥ H, JZ)$$

$$\quad = 0 \quad (36)$$

for any $X \in \Gamma(D_o)$ and $Z \in \Gamma(JL_2)$. Moreover, by using (25) we obtain

$$\bar{g}(\bar{R}(Z, X)X, Z) = \frac{1}{16}(c_1 + c_2)(1 + 2\bar{g}(X, FX)\bar{g}(FZ, Z))$$

$$\quad + \frac{1}{16}(c_1 - c_2)(\bar{g}(FX, X) + \bar{g}(FZ, Z)) \quad (37)$$

for any orthonormal vector fields $X \in \Gamma(D_o)$ and $Z \in \Gamma(D)$. As X, FX and Z, FZ are independent, they can be chosen as orthogonal vector fields. In this case, we get

$$\bar{g}(\bar{R}(Z, X)X, Z) = \frac{1}{16}(c_1 + c_2)$$

This is a contradiction. This completes the proof. \hfill \Box

ACKNOWLEDGMENT

The author would like to thank the referee(s) for valuable suggestions and comments, which have improved the present paper.

REFERENCES

